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Abstract. Customer databases contain histories of vital events such as the acquisition and cancella-
tion of products and services. The historical data is used to build predictive models for customer re-
tention, cross selling, and other database marketing endeavors. The temporal nature of the target 
events can be accommodated with survival analysis methods. This paper outlines the application of 
survival analysis to predictive modeling and includes a discussion of the discrete-time logistic and 
piecewise exponential hazard models. 

1 Customer Event History Data 

Historical data, extracted from operational customer databases, can be used to build predictive models 
for various temporal outcomes: 

− cancellation of products or services (churn) 
− downgrading 
− acquiring add-on products or upgrading 
− product return 
− loan prepayment. 

The occurrence of the target event on the ith customer is controlled by the probability distribution of 
the time until the event, iT . Customer events might be recorded at discrete increments such as months or 

on a continuous time scale. At the time the data was extracted for analysis, all customers usually have 
not experienced the event. In which case, the event time is considered (right) censored. Survival analysis 
is a set of statistical methods designed for censored duration data [1][2][3]. 

Censored event history data can be represented by an observed event time, ),min( iii BaTY −= , and 

an event indicator, }{ iii BaTI −≤=δ . The date of origin, iB , can vary among customers. Typically, 

iB  represents the date that an account was opened. In this censoring scheme (generalized type I censor-

ing), there is a fixed date, a, when the extracted data was current (Fig. 1). Another possible cause of 
censoring is the occurrence of an independent and mutually exclusive competing event. For example, if 
the event of interest is cancellation of a service, then a customer that moves out of the service area might 
be considered censored at the date they moved, ia . 

The data used for mining customer histories consists of retrospective samples extracted from large 
operational databases. In some applications, the available data consists of a cross-sectional snap-shot of 
customers that were active as of some fixed date c. Such a sample is truncated on the left. The sample is 
length-biased because, for a given start date, iB , only the lengthier event times appear in the sample 

(Fig.1). With discrete event times the truncation date can equal the censoring date. The available data 
might be all accounts active at the beginning of the month, some of which experienced the event during 
the month. 
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Fig 1. In this lexis diagram, a line segment represents each subject. The vertical axis is the event time. The horizon-
tal axis is the calendar date. The beginning of each line segment corresponds to the origin )0,( iB . The end of the 

line segment corresponds to the event time ),( iii TTB + . The eight subjects with lines extending beyond the cen-

soring date, 1000=a , are censored at ii BY −= 1000 . If the sample were truncated at the date 800=c , the 11 

dashed lines would be absent 

The event time distribution is usually characterized by the survival function, )Pr()( tTtS i ≥= , or the 

hazard rate. For discrete event times, the hazard rate is the conditional probability of the event given that 
it has yet to occur 

)(/)(1)|Pr()( 1 jjjjj tStStTtTth +−=≥== . 

For continuous event times, the hazard rate is the limit of the conditional probability in an infinitesimally 
small interval 

( ) ))(ln()|Pr(lim)( 1

0
tStTtTtth dt

d−=≥∆+<≤= ∆→∆
 

The hazard can be interpreted as an age-specific rate (events/unit time). The survival function decreases 
monotonically from one to zero. In contrast, the hazard rate can be any nonnegative function. The shape 
of the hazard rate often gives insight into the underlying system driving the occurrence of an event  

Customer databases contain concomitant information that may affect the event time distribution such 
as demographics, account balances and payments, and the occurrence of other events such as the acquisi-
tion of new products or services. The vector of covariates for the ith customer, )(tix , is often time-

dependent. Time-dependent covariates can represent single irreversible events that occur at some point 
in the customer lifetime such as paying off an installment loan. Time-dependent covariates can be step 
functions representing the occurrences of repeatable events such as problems reported to customer ser-
vice or payment delinquencies. Time-dependent covariates can be more continuously varying quantities 
such as the balance in an investment account. 

2 Predictive Scoring 

The ultimate purpose of modeling customer relationship data is usually prediction. Predictive models 
are used to map attributes of each customer to a score, which measures the propensity of some actionable 
event. The choice of an appropriate predictive score depends on how the model is to be deployed. In the 
most general scenario, customers would be scored at the current point in their lifetime for the propensity 
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of the outcome. Consequently, predictive scoring should consider the distribution of the residual event 
time )|( tTtTR ≥−= . The hypothetical random variable R is the time remaining until the event, condi-

tional on the information available at the current time t. The hazard rate at t, )(th , equals the probability 

density (mass) function of R and can be interpreted as the probability of the event in the next instant. The 
hazard rate is a relevant score in many applications. 

Other potentially useful scores can be derived from the distribution of the residual event time. The 
expected value of R (mean residual life) is the area under survival function of R  

∫
∞

=≥−=
t

dxxS
tS

tTtTEtµ )(
)(

1
)|()( . 

The median of R (median residual life) is the half-life of the remaining time 

( ) ttSStTtTmedtm −=≥−= − )()|()( 2
11 . 

The mean and median are defined similarly for discrete event times. Smaller quantiles of the residual 
event time (e.g., quarter-life) can be useful with heavily censored data because the mean and median can 
fall far outside the range of observed events. If the model is used to score new customers at time zero, 
then )0(µ and )0(m  revert to the mean and median of T.  

In many cases, the scores are used to forecast a future time rt + . The probability density function of 
R evaluated at r is more relevant than the hazard rate at rt +  because T is only known to be greater than 
t 

( )
)(

)(
)|Pr(lim)( 1

0 tS

rtf
tTrtTrrf R

+=≥∆+<−≤= ∆→∆
. 

In forecasting applications, the time-dependent covariates would either need to be forecasted or lagged 
by r units in the model. 

When the entire future interval ],[ rtt +  is of interest, the survival function of R evaluated at r is per-

tinent 

)(/)()|Pr()( rSrtStTrtTrS R +=≥+≥= . 

This quantity is monotonically related to the cumulative hazard (total risk) on the interval ],[ rtt + . The 

area under the survival function of R on the interval ],[ rtt +  involves all values in the interval, not just 

the endpoints. This area is equal to the restricted mean residual event time  

∫
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==
rt
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rRErtµ )(
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1
)),(min(),( . 

When 0=t , the restricted residual event time is the restricted mean life [4]. 
An ideal predictive scoring model would give a sufficiently flexible estimate of the hazard rate as a 

function of the (possibly time-dependent) covariates. The discrete-time logistic hazard model and the 
piecewise exponential hazard model passably satisfy this requirement. The hazard rate uniquely charac-
terizes the event time distribution. The survival function can be determined from the hazard rate using 

the identities 





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)(exp)(  and ∏
<

−=
tt

j

j

thtS ))(1()(  for continuous and discrete times, respec-

tively. 

3 Discrete-Time Logistic Model  

The discrete-time logistic model [5] assumes the logit of the discrete hazard is a linear combination of 
the logit of the baseline hazard rate (not depending on the covariates) and some suitably flexible function 
of the covariates (often linear).  
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The probability mass function of the observed data ),( iiY δ  
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equals the joint distribution of the }{ jiIiij == δδ , for ij ,,0= ; where the ijδ  are treated as inde-

pendent Bernoulli variates with posterior probabilities equal to ))(|( iii yyh x . Consequently, the pa-

rameters can be estimated by maximum likelihood using logistic regression [2]. The iY  need to be ex-

panded to one pseudo-observation for each time point that is less than or equal to iY . Discrete time-

dependent covariates may have different values for each pseudo-observation. 
The model should include a sufficiently flexible parameterization of the time and covariate effects. 

One effective approach is to use regression spline terms [6]. Alternatively, the model can be represented 
as a neural network with a logistic output activation function and a Bernoulli error function [7]. 
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Fig 2.  Discrete hazard rate for investor attrition, estimated using a discrete-time logistic neural network model. The 
model included the month after opening an investment account and a binary predictor indicating online investors 

If the sample was left truncated at iBc − , then the probability mass function of the observed data 

),( iiY δ  becomes 
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Thus, the parameters can be estimated using logistic regression after removing the pseudo-observations 
with times earlier than the truncation time iBc − . In the special case where the truncation date is iY , 

each subject has one observation. 
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4 Weibull Model 

A simple yet flexible method for modeling continuous event times is to assume they follow a Weibull 
distribution with shape parameter α  and scale parameter )),(exp( ßx iη , where ),( ßx iη is a suitable 

function of the covariates (often linear). The Weibull assumption leads to a proportional hazards model 

)),(exp()|( 1 ßxx ii tth αηα α −= − . 

The Weibull model accommodates a wide range of monotonic hazard rates. The hazard rate decreases 
at decreasing rate when 1<α . The hazard is constant when 1=α  (exponential distribution). The hazard 
increases at a decreasing rate when 21 <<α . The hazard increases linearly when 2=α  (Rayleigh dis-
tribution). The hazard increases at an increasing rate when 2>α . 

The Weibull model can be fitted to the data ),( iiY δ  by maximum likelihood using methods designed 

for the class of accelerated failure time (AFT) models that are widely used in engineering applications. 
The parameter estimates can be used to estimate other characteristics of the distribution, such as the 
survival function 

( ))),(exp(exp)|( ßxx ii ttS αηα −−= , 

the mean residual event time 

( ) ( )( )))),(exp(,(11)),(exp(exp)),(exp()( 11 ßxßxßx iii tPtt αηαηηµ α
αα

α −−+Γ−=  

(P is the incomplete gamma function), and the median residual event time  

( ) tttm ii −+−=
αα αηη

/1
)2ln()),(exp()),(exp()( ßxßx . 

One shortcoming of the Weibull model (as well as other AFT models) is that standard implementations 
do not allow time-dependent covariates. 

5 Piecewise Exponential Model 

The piecewise exponential model [8] allows for a wider variety of hazard rate shapes than the Weibull 
model. The hazard rate is approximated by a step function, where time is partitioned into J inter-
vals ),(],](,0( 12110 ∞== − JJ bbbbbb  

),())),((exp())(|( 11 jjjiji bbtbhtth −− ∈= ßxx η . 

The values of the time-dependent covariates at the beginning of each interval affect the levels of the step 
function. 

The distribution of the data ),( iiY δ  is proportional to the joint distribution of 

}{ 1 jijiij bybI ≤<= −δδ , for }:max{,,1 1 ij ybjj <= − ; where the ijδ  are treated as independent Pois-

son variates with means 

)),(min()),(()ln())(ln( 11 −− −++= jjijijij bbybhE ßxηδ . 

Consequently, the parameters ),( ß′jh  can be estimated by maximum likelihood using Poisson regression 

with a log link function and an offset [9][2]. The iY  need to be expanded to one pseudo-observation for 

each interval prior to and including the current. The Poisson model can be closely approximated using 
logistic regression by treating the ijδ  as binomial variates with )),(min( 1−− jji bby  trials. 
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Fig. 3. Piecewise exponential hazard rate, before and after step selection. The example is from an up-selling applica-
tion where the target event is upgrading to a high-value communication product. The time axis was partitioned into 
10 intervals at the deciles of the event times 

A more parsimonious step function can be selected without altering the interval lengths by merging 
consecutive steps where the incremental change )ln()ln( 1−−= kkk hhs  is small (Fig 3.). Step selection is 

facilitated by parameterizing the interval effect as ∑
=

=
j

k
kj sh

1

)ln( . Eliminating a term ks  from the 

model, for 1>k , merges the kth and (k-1)th step. 

6 The Cox Proportional Hazards Model 

In the Cox model, the functional form of the hazard rate is unspecified and unrestricted 

))),((exp()())(|( 0 ßxx tthtth ii η= . 

The parameters are estimated by maximizing the partial likelihood [5], which does not involve the base-
line hazard rate, )(0 th . The model was designed for evaluating the effects of the covariates on the hazard 

without having to specify the functional form of the hazard. This seemingly attractive property is a li-
ability in predictive modeling because the hazard rate is not estimated. Supplementary methods have 
been devised for nonparametrically estimating the survival function from a fitted Cox model [3]. The 
estimated survival function is constant between each distinct event time. This nonparametric representa-
tion does not lead to good estimates of the hazard rate and is prohibitively cumbersome as a scoring 
model. 

The Weibull and piecewise exponential models are special cases of the general form of the Cox 
model. Consequently, the Cox model can be useful as an auxiliary tool for exploratory analysis, variable 
selection, residual diagnostics, and model validation.  
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